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Effects of random noise on a simple class of growing network models
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We investigate the effects of random noise on network systems. In particular, we consider a simple class of
growing network models whose topological structure is determined by the preferred attachmevie
introduce a noise-induced attachm@ptwhich includes fluctuations in the number of links of individual nodes
due to a random noise. We carry out the numerical simulations to show that the topological structure of the
networks is determined not only By, but also by the strength of the noise. Analytic and numerical solutions
are also presented to support this observation. In addition, we study the stability of networks against attacks
under the noisy condition. Similarly, we introduce a noise-induced preferred deBatioand show that noise
is an essential feature to determine the stability of networks.
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[. INTRODUCTION that a new node likely links to an old node with a probability
that is proportional to the number of links of the target node
The properties of complex networks have been investi{a preferred attachmer,). That is, all old nodes with the
gated by many scientists recentffor reviews, see Refs. same number of nodes have the same strength of attracting a
[1-4)). In particular, Barabsi and Albert[5] proposed a new node. However, if noise exists in the network, nodes
simple growing network model to explain a power-law dis- have different attachment probability even though they have
tribution of nodes that havke links n,~k™", which is often  the same number of links. Thus, we assume the individual
observed in many growing network systems including theattachment under the noisy condition %i):AkH(ki)

World Wide Web, scientific collaboration, citation networks . o r -
, ) ) (1)
etc. In their model, a new node links to an existing node with[Where(') denotes an individual node that Hasnks andry

a probability that is proportional to the number of links of the IS @ random noise To most simply illustrate the effect of a
existing nodethe preferred attachmeny). As a result they ~'andom noise, we further assurg=k* (wherea is a small
found a power-law distribution of nodes with a exponent réal number(8]) and the noise causes miscounting of the
=3, which roughly matches with the observed values ofnumber of links of target nodes only. Then, the noise-induced
many real networkg4]. More general growing network attachment of nodé) is obtained as

models have also been proposed, either suggesting a gener-

alized form of the attachmefi6] or featuring new essential (ma{ok+rM)e (a>0)
effects in network modelf7]. . _

In this paper, we investigate a simple class of growing Al = const , (a=0) 1)
network models under the influence of random noise. As far (ma{1k+rW)* (a<0),

as we know, the effects of noise have not been considered in

the previous network models because noise often seems to is W) ) o i G
relatively small and is averaged to zero in the statistical limitWherer® is an uniformly distributed random integer{
However, it is questionable that if the above assumptions ar& —A,—A+1,... A andA is a positive integgrand inde-
applicable in real network systems. In particular, noise mayendent of the number of links of a target noote that by
influence us to miscount the exact number of links of indi-definition, 0<A{’ <)

vidual nodes, which results in connecting a new node to an |ncorporating this noise-induced attachment of individual

improper old node. The strength of noise is generally small () ; : : N
So, the effects of the noise may not be important for highlyhOdeAk , We carry out numerical simulations as follows:

linked nodes. However, for nodes with only a few links, the V€ create a new node at eaqh time st(eap;for(%ll existing
effects of the noise cannot be ignored. nodes, we assign a random integé? (—~A=<r<A) and
In Sec. I, we attempt to construct a noise-induced grow-calculateA{ from Eq.(1); (iii) we obtain a normalized pre-
ing network model featuring the above consideration. Wderred attachment probability of an old nodé by dividing
present the results of our numerical simulations in the fol-A() by the sum=]N ,A{", whereN is the total number of
lowing section. In Sec. Ill, we obtain analytical solutions of existing nodesfiv) we link the new node to an old node

our model using the rate equation approf8hand compare ggjected by the attachment probability obtained in $iép
them with our simulations as well. In addition, we also show(v) we repeat stepé)—(iv) adding 16 nodes and calculate

the effects of noise on the Stabl“ty of networks in Sec. IV. the probablllty distribution of nodes Wimlinks, Ny (Vl) in

Finally, we add a brief conclusion in Sec. V. order to obtain better statistics, we carry out ten simulations

and finally calculate an ensemble average probalkiiiy.
Figure 1 showgn,) versusk with different strengths of
We attempt to construct a simple class of growing net+andom noises. For the linear attachmemnt(1.0), the slope

work models that have an intrinsic random noise. We assumef (n,) becomes steeper and steeper in ldtgegion asA

II. NOISE-INDUCED MODEL
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FIG. 1. (n,) versusk usingA, in Eq. (1). (a) For the linear o o="10 o0 8
attachmenty=1.0 withA=0 (O), 1 (O), 5 (¢), and 10 @), 0 2 4 A 8 8 10

while (b) for the inverse linear attachment=-—1.0 with A
=0 (0), 1 (), 2 (¢), and 5(\). (ny) is the average num- FIG. 2. u versusA with «=1.0 (V), 0.5 (4), 0.0 (0),
ber of nodes obtained from ten numerical experiments for each 0.5 (), and—1.0 (O). (Note thatu decreases aA increases
parameter value. The total number of nodes in the networks’is 10 whena=0.0.)
[Note that data in the left plot are chosen wh&r2" (n
=0,1,...)] Now, we introduce a random noise in the model. The
individual attachment can be obtained from Et), and us-
increasegFig. 1(a)]. However, for the inverse linear attach- ing this the appropriated attachméXy is obtained from the
ment (@=—1.0), the probability of having nodes with a relation
smallk decreases as increases, which is the opposite to the
previous observatiofFig. 1(b)]. Nk ,
2, (ktr)e,
IIl. ANALYSIS OF THE MODEL Akz'lN—, (5)
k

If there is no noise, our model can be described by the '
rate equations foN,(t), the number of nodes that hake wherer(® is an intrinsic noisgwhich is an uniformly dis-
links, tributed random integer number in the regionA=<r®
<A) andZ(---)%, denotes the sum of the numerator only
®) when (---)>0 because we assume that all nodes have at
least one link in our model. For lardge(k>A), applying the
Taylor series expansion, E¢5) becomesA,~ (k%/N,)[ Ny
+(alk)2 ' r®]. Sinces ™ r~0 (in the statistical limit
N:>1), we finally obtainA,~k*=A,. For smallk (k
=<A), we need more rigorous calculation due to the restric-
tion on the sum of the numerator of E¢p). However, we
generally find thatA,=A, (A,<A,) when a>0 (a<0).
Substituting this noise-induced attachmégtinto Egs.(3)
and(4), we can obtain formal solutions for our noise-induced
model. (See solid lines in Fig. 3.

AN A= 1Nk 1= ANk

dt B
> AN
=1

+ 61,

where the preferred attachmeft is anaveragestrength of
old nodes withk links to attract a new node, which is calcu-
lated from the relation, =3 AL/N, [AD is attraction
strength of the nodé) that hask links], andEf: 1AjN; is the
normalization factor. For a specific type of attachmént
~k” (where 0= y<2), analytic and asymptotic solutions of
Eqg. (2) have been studied by Krapivsky and Redf@&l In

pirtlcular, when k<1, assuming thatN=ng and A plot of u versusA for differenta is shown in Fig. 2u
2j=1AN;=put, they presented formal solutions of B@),  generally increase@decreasesas A increases whernr>0
k 1 (a=<0). The casex=0 seems to be contradictory because
= (1+ ﬁ) _ (3 We can obtainu=1.0 from Eq.(4) if the attachment is a
A=t A constant. However, if noise exists, some nodes seem to have

zero or a negative number of links. Since a new node cannot

connect to thesésolated nodes, A, is not a constant but
becomes a function that dependsfdmandk. Therefore, even

Furthermore, inserting Eq(3) into the definition of u
= Ej”:lAjnj , & is obtained by solving the following relation:

w Kk 1 thougha=0, w is also a function ofA as shown in Fig. 2.
2 H (1+ Lk =1 (4) As examples, we consider two simple cases with integer
=121 A random noisesr()=—A,—A+1, ... A) in the following.

Therefore, if we knowA,, then we can calculate from Eq. k(l)AFor a ll(me;ar a;tachmekltcfl),d!v e_(:(btim,zk?[(A
(4) and with thisu we eventually obtaim,. This result +K)(A+1+Kk)1/2(2A+1) (k<A) andA=k (k>4) from

suggests that the topological structure of a network is detefEd. (5). InsertingA, instead ofA in Eq. (4), we numerically
mined byA,. That is, it is crucial to measus in order to ~ calculateu=3.78 whenA =10 (see Fig. 2 Using thisu and
investigate the real network systems. A (instead ofA,), we also obtaim, from Eg. (3). In par-
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FIG. 4. Effect of noise on the stability of networks. The ratio of
107 107 isolated nodes to the total number of nodiess plotted as a func-
a=0.5 a=-0.5 tion of the fraction of deleted nodes(a) shows cases of attacking

10 10 networks with a preferred deletioB,=k? (8=1.0), while (b)

10° 10" Kk 10° 10’ k shows cases of attacking networks wjigh= —1.0. The circles, the

triangles, the squares, and the diamonds denote networks con-
FIG. 3. n, versusk. Solid lines represent numerical solutions structed with different strengths of random noise 0, 5, 10, and

obtained from Eqs(5), (4), and (3), while the circles and the tri- 20, respectively(Note that the total number of nodes of networks
angles are obtained by simulatiofsee Sec. )l (8 «=1.0, A before attacks is F0)
=0 (0O) and 10 ), (b) a=—1.0,A=0 (O) and 5 ), (¢) @
=0.5,A=0 (O) and 10 (), and(d) a=-0.5, A=0 (O) and
5 (A). [Note that data ina@ and (c) are chosen whek=2" (n
=0,1,...)]

works using our model, wantentionally remove nodes one

by one. In order to select nodes to delete, we introduce a
preferred deletiom,=k~. We assume that the probability of
deleting a node witlk links is proportional td, . In particu-

lar, whenB>0, a highly linked node is more likely deleted,
Wwhile, when 8<0, a lesser linked node is deleted with
higher probability{9]. In addition, whend=0, we randomly
choose a node and delete it. Since the networks have an
intrinsic random noise, we should define a noise-induced in-

dividual preferred deletioB{’ in the same way we defined
the individual attachment. For simplicity, we assume that a
noise affects the counting of the number of links of indi-
vidual nodes only. That is,

ticular, for sufficiently largek, n,~k~ T ~k=478 Thus,
the exponent of the node distribution is much larger than 3
which is obtained from the network without noise.

(ii) For an inverse linear attachment£ —1), we obtain

A=[1(QA+1)]SKAAA)  (ksA) and A=[1/(2A
+ 1)]2!‘;,;A_A(1/i) (k>A) from Eq.(5). Similarly, we calcu-
late w=0.23 whenA =5 (see Fig. 2 and numerically obtain
n, from Eq.(3). For sufficiently largek, A, becomes X and
n, asymptotically becomeskg)/T"(ku+1). Considering
the largest term only, In.~—KklInk. Thus, the slope of log-
log plot of n versusk is relatively insensitive ta. [see Figs.
1(b), 3(b), and 3d)].

Figure 3 shows the node distributiong under the noisy
situations. Solid lines denote numerical solutions obtained
from Egs.(5), (4), and(3), while the circles and the triangles
denote solutions from our simulations. As shown in Fig. 3,
we observe that a random noise tends to hiridecelerate
the emergence of highly linked nodes wher 0 (a<0). In
order to verify the numerical solutions, we also plat,) a small real number.. .
obtained from our simulations, which shows, for the most_ !N order to quantify the stability of a network, we count

part, a good agreement with the solutions. This result can bi&1€ humber of isolated nodes in the network as we remove a
~ . node at each time step. Another way to quantify the stability
also understood by the fact that fer-0, A, is always larger

: ) of a network is to measure tltameterof the network sug-
than A, but the difference become smaller lasncreases. g

. ; Al , , Bar . H L if
Thus, nodes with a small number of links tend to attract ne ested by Albert, Jeong, and Barabgl0]. However, i

. . ) odes aresparselyconnected, a network tends to be frag-
nodes more strongly under the noisy condition, which resu“?nented when we remove nodes. In this case. we often ob-
in relatively high probabilityn, in the smallk region [see . '

Fi d H he situation i giff serve sudden jumps in the diameter. Thus, counting the num-
igs. 3a) and c)]. However, the situation is very different e ot jsojated nodes is a more proper method to determine
when a<0. A, is smaller thamA, whenk=<A, while A, is

/ | _ the stability of the sparsely connected networks.
bigger thanA, whenk>A. Thus, highly linked nodes tend  Figure 4 shows an effect of noise on the stability of net-
to attract new nodes mofsee Figs. &) and 3d)].

works. We construct networks using the model described in
Sec. Il fixing a=1.0 andA=0, 5, 10, and 20. After the
IV. STABILITY OF NETWORKS total number of nodes in the networks becomey 4 start
We now investigate the effects of random noise on thd® attack the networks. We choose a node at a time with a
stability of a network against attacks. After we construct netnoise-induced preferred deIeti<Bf(') and remove the node

(ma{ok+I]E (B>0)
const (B=0) 6)

B)=
(ma{1k+7D]E (B<0),

where () is an uniformly distributed random integer({
=—A,—A+1,... A andA is a positive integerand g3 is

026110-3



J.-W. KIM AND H. KANTZ PHYSICAL REVIEW E 68, 026110(2003

Is Is ? isolated nodes when it is attacked with a posiii/gsee solid
(@) o=1.0 (b) =1.0 23 lines in Figs. %a) and §b)]. However, when the networks are
0.5 o° o . / > s -
o° A7 attacked with a negativgg we observe a relatively same
0.4 0% 4T 0.2 %57 result[see dashed lines in Fig.].5Since only a few nodes
0.3 {o° +++__‘TA-,3A L have very large number of links, while most of the nodes
o° ++,fA'A"AA/ - =7 have a small number of links in the network constructed with
0.2 §o7 L akant - 0.1 5> " ; : : .
0 xkuEC- _ a positivea, attacking the highly linked nodes results in a
0.1 zgifx’ rapid increase of the number of isolated nodes, while attack-
e o ing the lesser linked nodes results in a slow increase. How-
0 0.1 0.2 0 0.1 0.2 ever, for a network with a negative, the link distribution of
S nodes are quite uniform, attacking either the highly linked
FIG. 5. Is versuss with different A. (a) shows cases of attack- ggggg or the lesser linked nodes does not show much differ-

ing a network constructed using a preferred attachnfgnt k*
(a=1.0), while(b) shows cases of attacking a network constructed
with = —1.0. Solid lines f=1.0), dotted lines $=0), and

As shown in Fig. 5, the noise tends to stabilizkestabi-
lize) the networks by reducin@ncreasing the number of the
dashed lines §=—1.0) denote attacking a network without a isolated nodes when the networks are attacked with a posi-

noise, while the circles = 1.0), the pluses£=0), and the tri- Ve (negative B [see the circles£=1.0) and the triangles
angles B=—1.0) denote attacking a network with a nofga) A (B= _1-9) in Fig. §. We can define the average preferred
=5 and(b) A=2]. (Note that the total number of nodes of net- deletionB (B,) from the individual deletiorB{’ (B{") in

works before attacks is £0 the same way as we definég (A,) from A{’ (A{"). Then,

_ _ _ . we observe thaB, =B, and the difference becomes larger as
and all links connected to ifin order to simply illustrate the  k decrease under the noisy condition. It causes the probabil-
effect of noise, we do not consider any noise in the deletionty of selecting nodes with a small number of links to be
process of nodesA=0). However, we will present the ef- relatively higher when we attack the network with a positive
fect of noise on the deletion process at the end of this segg. Thus, the network under the noisy condition becomes
tion.] We plot the changes in the ratio of isolated nodes to thenore stable than the network without a noisee solid lines
total number of nodeks in the networks as a function of the ;4 the circles in Fig.)5 However, whers is negativeB, is
fraction of deleted nodesunder two different attack$See smaller thanB, in the smallk region k<A). Thus, the

Fig. 4@ for the attack with$=1.0 and Fig. ) for the  ,papijity of selecting highly linked nodes becomes higher

attack withg=—1.0] The circles, the triangles, the squares, y,e 1o noise, which results in destabilizing the network under
and the diamonds denote networks constructed with different o noise situatiorisee the dashed lines and the triangles in

strengths of random nois&,=0,5,10, and 20, respectively. Fig. 5.

As shown in Fig. 4, wher8>0, the number of isolated
nodes becomes smaller in networks with strong noise than V. CONCLUSION
that in networks with weak noise. However, whgr.0, we )
observe different results. The number of isolated nodes is not We have presented the effects of random noise on net-
much sensitive to the noise in the networks and even slightiyvork systems. We construct a growing network model, intro-
increases as the noise in the network becomes stronger. Thisicing noise-induced attachmeft. A noise is observed to
can be explained by the fact that the sturcture of networks isinder(acceleratethe emergence of the highly linked nodes
determined by the strength of noise particular, see Figs. 1, in a network with a positivénegative «. Analytic and nu-
3(a), and 3c)]. When «>0, the number of highly linked merical solutions are presented as well and compared with
nodes become smaller @s becomes larger. Thus, the net- our numerical simulations. In addition, we have also inves-
work with strong noise is more invulnerable when attackedigated the effects of noise on the stability of networks. After
with >0, while it is relatively easily segmented whegh  we construct a network using the model, we select a node
<0. with a probability which is proportional to the noise-induced

We consider the effect of noise in the deletion. We chooseleletionB{’ and delete it at each time step. The stability of a
a=*1 andA=0, and add 1Dnodes. After that we start to network is quantified by counting the number of isolated
attack the networks with three different deletion8<  nodes as a function of the number of deleted nodes. We
—1.0,0,1.0). Figure 5 shows the changes in the ratio of isoebserve that noise stabilizédestabilizes a network when
lated nodes to the total number of nodsesas a function of  the network is attacked with a positi@egative 8. Al-
the fraction of deleted nodes Lines denote the ratio of though there is some tendency that noise in the construction
isolated nodes without a noisé\ €0), while symbols de- of the network generally has some stabilizing effect, a proper
note with noisg A=5 for Fig. 5a) andA =2 for Fig. 5b)].  choice of the deletion strategy can cancel this effect. We
We observe that a network with a negativés more stable conjecture that our observations on the effects of a random
than a network with a positiver in a sense that it has less noise are key features of many growing networks.
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