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Effects of random noise on a simple class of growing network models
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We investigate the effects of random noise on network systems. In particular, we consider a simple class of
growing network models whose topological structure is determined by the preferred attachmentAk . We

introduce a noise-induced attachmentÃk which includes fluctuations in the number of links of individual nodes
due to a random noise. We carry out the numerical simulations to show that the topological structure of the
networks is determined not only byAk but also by the strength of the noise. Analytic and numerical solutions
are also presented to support this observation. In addition, we study the stability of networks against attacks

under the noisy condition. Similarly, we introduce a noise-induced preferred deletionB̃k , and show that noise
is an essential feature to determine the stability of networks.
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I. INTRODUCTION

The properties of complex networks have been inve
gated by many scientists recently~for reviews, see Refs
@1–4#!. In particular, Baraba´si and Albert @5# proposed a
simple growing network model to explain a power-law d
tribution of nodes that havek links nk;k2n, which is often
observed in many growing network systems including
World Wide Web, scientific collaboration, citation network
etc. In their model, a new node links to an existing node w
a probability that is proportional to the number of links of t
existing node~the preferred attachmentAk). As a result they
found a power-law distribution of nodes with a exponenn
53, which roughly matches with the observed values
many real networks@4#. More general growing network
models have also been proposed, either suggesting a g
alized form of the attachment@6# or featuring new essentia
effects in network models@7#.

In this paper, we investigate a simple class of grow
network models under the influence of random noise. As
as we know, the effects of noise have not been considere
the previous network models because noise often seems
relatively small and is averaged to zero in the statistical lim
However, it is questionable that if the above assumptions
applicable in real network systems. In particular, noise m
influence us to miscount the exact number of links of in
vidual nodes, which results in connecting a new node to
improper old node. The strength of noise is generally sm
So, the effects of the noise may not be important for hig
linked nodes. However, for nodes with only a few links, t
effects of the noise cannot be ignored.

In Sec. II, we attempt to construct a noise-induced gro
ing network model featuring the above consideration.
present the results of our numerical simulations in the
lowing section. In Sec. III, we obtain analytical solutions
our model using the rate equation approach@6# and compare
them with our simulations as well. In addition, we also sh
the effects of noise on the stability of networks in Sec.
Finally, we add a brief conclusion in Sec. V.

II. NOISE-INDUCED MODEL

We attempt to construct a simple class of growing n
work models that have an intrinsic random noise. We assu
1063-651X/2003/68~2!/026110~5!/$20.00 68 0261
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that a new node likely links to an old node with a probabil
that is proportional to the number of links of the target no
~a preferred attachmentAk). That is, all old nodes with the
same number of nodes have the same strength of attract
new node. However, if noise exists in the network, nod
have different attachment probability even though they h
the same number of links. Thus, we assume the individ
attachment under the noisy condition asÃk

( i )5Ak1r k
( i )

@where~i! denotes an individual node that hask links andr k
( i )

is a random noise#. To most simply illustrate the effect of a
random noise, we further assumeAk5ka ~wherea is a small
real number@8#! and the noise causes miscounting of t
number of links of target nodes only. Then, the noise-indu
attachment of node~i! is obtained as

Ãk
( i )5H ~max@0,k1r ( i )# !a ~a.0!

const ~a50!

~max@1,k1r ( i )# !a ~a,0!,
~1!

where r ( i ) is an uniformly distributed random integer (r ( i )

52D,2D11, . . . ,D andD is a positive integer! and inde-
pendent of the number of links of a target node.~Note that by
definition, 0<Ãk

( i ),`.!
Incorporating this noise-induced attachment of individu

nodeÃk
( i ) , we carry out numerical simulations as follows:~i!

we create a new node at each time step;~ii ! for all existing
nodes, we assign a random integerr ( i ) (2D<r ( i )<D) and
calculateÃk

( i ) from Eq. ~1!; ~iii ! we obtain a normalized pre
ferred attachment probability of an old node~i! by dividing
Ãk

( i ) by the sum( i 51
N Ãk

( i ) , whereN is the total number of
existing nodes;~iv! we link the new node to an old nod
selected by the attachment probability obtained in step~iii !;
~v! we repeat steps~i!–~iv! adding 105 nodes and calculate
the probability distribution of nodes withk links, nk ; ~vi! in
order to obtain better statistics, we carry out ten simulatio
and finally calculate an ensemble average probability^nk&.

Figure 1 showŝ nk& versusk with different strengths of
random noises. For the linear attachment (a51.0), the slope
of ^nk& becomes steeper and steeper in largek region asD
©2003 The American Physical Society10-1
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increases@Fig. 1~a!#. However, for the inverse linear attach
ment (a521.0), the probability of having nodes with
smallk decreases asD increases, which is the opposite to th
previous observation@Fig. 1~b!#.

III. ANALYSIS OF THE MODEL

If there is no noise, our model can be described by
rate equations forNk(t), the number of nodes that havek
links,

dNk

dt
5

Ak21Nk212AkNk

(
j 51

`

AjNj

1dk,1 , ~2!

where the preferred attachmentAk is anaveragestrength of
old nodes withk links to attract a new node, which is calcu
lated from the relationAk5( i 51

Nk Ak
( i )/Nk @Ak

( i ) is attraction
strength of the node~i! that hask links#, and( j 51

` AjNj is the
normalization factor. For a specific type of attachmentAk
;kg ~where 0<g,2), analytic and asymptotic solutions o
Eq. ~2! have been studied by Krapivsky and Redner@6#. In
particular, when k<1, assuming that Nk5nkt and
( j 51

` AjNj5mt, they presented formal solutions of Eq.~2!,

nk5
m

Ak
)
j 51

k S 11
m

Aj
D 21

. ~3!

Furthermore, inserting Eq.~3! into the definition of m
5( j 51

` Ajnj , m is obtained by solving the following relation

(
k51

`

)
j 51

k S 11
m

Aj
D 21

51. ~4!

Therefore, if we knowAk , then we can calculatem from Eq.
~4! and with this m we eventually obtainnk . This result
suggests that the topological structure of a network is de
mined byAk . That is, it is crucial to measureAk in order to
investigate the real network systems.

FIG. 1. ^nk& versusk using Ã, in Eq. ~1!. ~a! For the linear
attachmenta51.0 with D50 (s), 1 (h), 5 (L), and 10 (n),
while ~b! for the inverse linear attachmenta521.0 with D
50 (s), 1 (h), 2 (L), and 5(n). ^nk& is the average num
ber of nodes obtained from ten numerical experiments for e
parameter value. The total number of nodes in the networks is5.
@Note that data in the left plot are chosen whenk52n (n
50,1, . . . ).#
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Now, we introduce a random noise in the model. T
individual attachment can be obtained from Eq.~1!, and us-
ing this the appropriated attachmentÃk is obtained from the
relation

Ãk5

(
i 51

Nk

~k1r ( i )!.0
a

Nk
, ~5!

where r ( i ) is an intrinsic noise~which is an uniformly dis-
tributed random integer number in the region2D<r ( i )

<D) and ((•••).0
a denotes the sum of the numerator on

when (•••).0 because we assume that all nodes have
least one link in our model. For largek (k.D), applying the
Taylor series expansion, Eq.~5! becomesÃk;(ka/Nk)@Nk

1(a/k)( i 51
Nk r ( i )#. Since( i 51

Nk r ( i );0 ~in the statistical limit

Nk@1), we finally obtain Ãk;ka5Ak . For small k (k
<D), we need more rigorous calculation due to the rest
tion on the sum of the numerator of Eq.~5!. However, we
generally find thatÃk>Ak (Ãk<Ak) when a.0 (a<0).
Substituting this noise-induced attachmentÃk into Eqs.~3!
and~4!, we can obtain formal solutions for our noise-induc
model.~See solid lines in Fig. 3.!

A plot of m versusD for differenta is shown in Fig. 2.m
generally increases~decreases! as D increases whena.0
(a<0). The casea50 seems to be contradictory becau
we can obtainm51.0 from Eq. ~4! if the attachment is a
constant. However, if noise exists, some nodes seem to h
zero or a negative number of links. Since a new node can
connect to theseisolated nodes,Ãk is not a constant bu
becomes a function that depends onD andk. Therefore, even
thougha50, m is also a function ofD as shown in Fig. 2.

As examples, we consider two simple cases with inte
random noises (r ( i )52D,2D11, . . . ,D) in the following.

~i! For a linear attachment (a51), we obtainÃk5@(D
1k)(D111k)#/2(2D11) (k<D) andÃk5k (k.D) from
Eq. ~5!. InsertingÃk instead ofAk in Eq. ~4!, we numerically
calculatem53.78 whenD510 ~see Fig. 2!. Using thism and
Ãk ~instead ofAk), we also obtainnk from Eq. ~3!. In par-

h

FIG. 2. m versus D with a51.0 (,), 0.5 (n), 0.0 (L),
20.5 (h), and21.0 (s). ~Note thatm decreases asD increases
whena50.0.)
0-2
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ticular, for sufficiently largek, nk;k2(11m);k24.78. Thus,
the exponent of the node distribution is much larger than
which is obtained from the network without noise.

~ii ! For an inverse linear attachment (a521), we obtain
Ãk5@1/(2D11)#( i 51

k1D(1/i ) (k<D) and Ãk5@1/(2D
11)#( i 5k2D

k1D (1/i ) (k.D) from Eq.~5!. Similarly, we calcu-
latem50.23 whenD55 ~see Fig. 2! and numerically obtain
nk from Eq.~3!. For sufficiently largek, Ãk becomes 1/k and
nk asymptotically becomes (km)/G(km11). Considering
the largest term only, lnnk;2k ln k. Thus, the slope of log-
log plot of nk versusk is relatively insensitive tom @see Figs.
1~b!, 3~b!, and 3~d!#.

Figure 3 shows the node distributionsnk under the noisy
situations. Solid lines denote numerical solutions obtain
from Eqs.~5!, ~4!, and~3!, while the circles and the triangle
denote solutions from our simulations. As shown in Fig.
we observe that a random noise tends to hinder~accelerate!
the emergence of highly linked nodes whena.0 (a<0). In
order to verify the numerical solutions, we also plot^nk&
obtained from our simulations, which shows, for the m
part, a good agreement with the solutions. This result can
also understood by the fact that fora.0, Ãk is always larger
than Ak , but the difference become smaller ask increases.
Thus, nodes with a small number of links tend to attract n
nodes more strongly under the noisy condition, which res
in relatively high probabilitynk in the smallk region @see
Figs. 3~a! and 3~c!#. However, the situation is very differen
whena,0. Ãk is smaller thanAk whenk<D, while Ãk is
bigger thanAk whenk.D. Thus, highly linked nodes ten
to attract new nodes more@see Figs. 3~b! and 3~d!#.

IV. STABILITY OF NETWORKS

We now investigate the effects of random noise on
stability of a network against attacks. After we construct n

FIG. 3. nk versusk. Solid lines represent numerical solution
obtained from Eqs.~5!, ~4!, and ~3!, while the circles and the tri-
angles are obtained by simulations~see Sec. II!. ~a! a51.0, D
50 (s) and 10 (n), ~b! a521.0, D50 (s) and 5 (n), ~c! a
50.5, D50 (s) and 10 (n), and ~d! a520.5, D50 (s) and
5 (n). @Note that data in~a! and ~c! are chosen whenk52n (n
50,1, . . . ).#
02611
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works using our model, weintentionally remove nodes one
by one. In order to select nodes to delete, we introduc
preferred deletionBk5kb. We assume that the probability o
deleting a node withk links is proportional toBk . In particu-
lar, whenb.0, a highly linked node is more likely deleted
while, when b,0, a lesser linked node is deleted wi
higher probability@9#. In addition, whenb50, we randomly
choose a node and delete it. Since the networks have
intrinsic random noise, we should define a noise-induced
dividual preferred deletionB̃k

( i ) in the same way we define
the individual attachment. For simplicity, we assume tha
noise affects the counting of the number of links of ind
vidual nodes only. That is,

B̃k
( i )5H ~max@0,k1t ( i )# !b ~b.0!

const ~b50!

~max@1,k1t ( i )# !b ~b,0!,
~6!

where t ( i ) is an uniformly distributed random integer (t ( i )

52L,2L11, . . . ,L andL is a positive integer! andb is
a small real number.

In order to quantify the stability of a network, we cou
the number of isolated nodes in the network as we remov
node at each time step. Another way to quantify the stabi
of a network is to measure thediameterof the network sug-
gested by Albert, Jeong, and Baraba´si @10#. However, if
nodes aresparselyconnected, a network tends to be fra
mented when we remove nodes. In this case, we often
serve sudden jumps in the diameter. Thus, counting the n
ber of isolated nodes is a more proper method to determ
the stability of the sparsely connected networks.

Figure 4 shows an effect of noise on the stability of n
works. We construct networks using the model described
Sec. II fixing a51.0 andD50, 5, 10, and 20. After the
total number of nodes in the networks becomes 105, we start
to attack the networks. We choose a node at a time wit
noise-induced preferred deletionB̃k

( i ) and remove the node

FIG. 4. Effect of noise on the stability of networks. The ratio
isolated nodes to the total number of nodesIs is plotted as a func-
tion of the fraction of deleted nodess. ~a! shows cases of attackin
networks with a preferred deletionBk5kb (b51.0), while ~b!
shows cases of attacking networks withb521.0. The circles, the
triangles, the squares, and the diamonds denote networks
structed with different strengths of random noiseD50, 5, 10, and
20, respectively.~Note that the total number of nodes of networ
before attacks is 105.)
0-3
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and all links connected to it.@In order to simply illustrate the
effect of noise, we do not consider any noise in the delet
process of nodes (L50). However, we will present the ef
fect of noise on the deletion process at the end of this s
tion.# We plot the changes in the ratio of isolated nodes to
total number of nodesIs in the networks as a function of th
fraction of deleted nodess under two different attacks.@See
Fig. 4~a! for the attack withb51.0 and Fig. 4~b! for the
attack withb521.0.# The circles, the triangles, the square
and the diamonds denote networks constructed with diffe
strengths of random noise,D50,5,10, and 20, respectively

As shown in Fig. 4, whenb.0, the number of isolated
nodes becomes smaller in networks with strong noise t
that in networks with weak noise. However, whenb,0, we
observe different results. The number of isolated nodes is
much sensitive to the noise in the networks and even slig
increases as the noise in the network becomes stronger.
can be explained by the fact that the sturcture of network
determined by the strength of noise@in particular, see Figs. 1
3~a!, and 3~c!#. When a.0, the number of highly linked
nodes become smaller asD becomes larger. Thus, the ne
work with strong noise is more invulnerable when attack
with b.0, while it is relatively easily segmented whenb
,0.

We consider the effect of noise in the deletion. We cho
a561 andD50, and add 105 nodes. After that we start to
attack the networks with three different deletions (b5
21.0,0,1.0). Figure 5 shows the changes in the ratio of
lated nodes to the total number of nodesIs as a function of
the fraction of deleted nodess. Lines denote the ratio o
isolated nodes without a noise (L50), while symbols de-
note with noise@L55 for Fig. 5~a! andL52 for Fig. 5~b!#.
We observe that a network with a negativea is more stable
than a network with a positivea in a sense that it has les

FIG. 5. Is versuss with different L. ~a! shows cases of attack
ing a network constructed using a preferred attachmentAk5ka

(a51.0), while~b! shows cases of attacking a network construc
with a521.0. Solid lines (b51.0), dotted lines (b50), and
dashed lines (b521.0) denote attacking a network without
noise, while the circles (b51.0), the pluses (b50), and the tri-
angles (b521.0) denote attacking a network with a noise@~a! L
55 and ~b! L52]. ~Note that the total number of nodes of ne
works before attacks is 105.!
02611
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isolated nodes when it is attacked with a positiveb @see solid
lines in Figs. 5~a! and 5~b!#. However, when the networks ar
attacked with a negativeb we observe a relatively sam
result @see dashed lines in Fig. 5#. Since only a few nodes
have very large number of links, while most of the nod
have a small number of links in the network constructed w
a positivea, attacking the highly linked nodes results in
rapid increase of the number of isolated nodes, while atta
ing the lesser linked nodes results in a slow increase. H
ever, for a network with a negativea, the link distribution of
nodes are quite uniform, attacking either the highly link
nodes or the lesser linked nodes does not show much di
ences.

As shown in Fig. 5, the noise tends to stabilize~destabi-
lize! the networks by reducing~increasing! the number of the
isolated nodes when the networks are attacked with a p
tive ~negative! b @see the circles (b51.0) and the triangles
(b521.0) in Fig. 5#. We can define the average preferr
deletionB̃k (Bk) from the individual deletionB̃k

( i ) (Bk
( i )) in

the same way as we definedÃk (Ak) from Ãk
( i ) (Ak

( i )). Then,

we observe thatB̃k>Bk and the difference becomes larger
k decrease under the noisy condition. It causes the proba
ity of selecting nodes with a small number of links to b
relatively higher when we attack the network with a positi
b. Thus, the network under the noisy condition becom
more stable than the network without a noise~see solid lines
and the circles in Fig. 5!. However, whenb is negative,B̃k is
smaller thanBk in the small k region (k<L). Thus, the
probability of selecting highly linked nodes becomes high
due to noise, which results in destabilizing the network un
the noise situation~see the dashed lines and the triangles
Fig. 5!.

V. CONCLUSION

We have presented the effects of random noise on
work systems. We construct a growing network model, int
ducing noise-induced attachmentÃk . A noise is observed to
hinder~accelerate! the emergence of the highly linked node
in a network with a positive~negative! a. Analytic and nu-
merical solutions are presented as well and compared
our numerical simulations. In addition, we have also inv
tigated the effects of noise on the stability of networks. Af
we construct a network using the model, we select a n
with a probability which is proportional to the noise-induce
deletionB̃k

( i ) and delete it at each time step. The stability o
network is quantified by counting the number of isolat
nodes as a function of the number of deleted nodes.
observe that noise stabilizes~destabilizes! a network when
the network is attacked with a positive~negative! b. Al-
though there is some tendency that noise in the construc
of the network generally has some stabilizing effect, a pro
choice of the deletion strategy can cancel this effect.
conjecture that our observations on the effects of a rand
noise are key features of many growing networks.
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@8# In many growing networks, it is often observed that a popu
node becomes more and more popular. This phenomenon
be understood by the model with a positive power attachm
Ak;ka (a.0). In particular, a linear attachment model w
proposed by Baraba´si and Albert in Ref.@5#. However, nega-
tive power attachment may be relevant in some situations, s
as computer terminals and server networks. People ten
connect to less occupied servers if other conditions are
same.

@9# It is a realistic assumption to attack a highly linked node w
higher probability (b.0) in many networks. However, we
may also observe a situation where nodes with a few lin
disappear easily, while highly linked nodes exist long (b
,0). As a simple example, we can consider web pages
World Wide Web. Popular pages exist for long time, wh
unpopular pages easily disappear.
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